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Overview

● Problem statement
● Current Rust practice
● Future directions?
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Problem Statement
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Problem Statement (C11, 1/2)

struct node_t* _Atomic top;

void list_push(value_t v) 
{
  struct node_t *newnode = (struct node_t *) malloc(sizeof(*newnode));

  set_value(newnode, v);
  newnode->next = atomic_load(&top);
  do {
    // newnode->next may have become invalid
  } while (!atomic_compare_exchange_weak(&top, &newnode->next, newnode));
}
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Problem Statement (C11, 2/2)

void list_pop_all()
{
  struct node_t *p = atomic_exchange(&top, NULL);

  while (p) {
    struct node_t *next = p->next;
        
    foo(p);
    free(p);
    p = next;
  }
}
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Problem Illustration (C11)

top A @ 1Initial State
Freelist
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top A @ 1Push B#1 B @ 2

Freelist
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Problem Illustration (C11)
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Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

“Zombie Pointer”
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Problem Illustration (C11)
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“Zombie Pointer”
OK in assembly language!!!
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Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

“Zombie Pointer”
OK in assembly language!!!

LIFO stack with pop-all is ABA tolerant
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Why Worry About Novel Algorithms?

● LIFO stack described by Treiber in 1986
– Written in IBM BAL, avoiding issues with compilers

● LIFO stack alluded to in early 1970s
● LIFO stack implemented in Rust library

– Though with pop(), not pop_all().
● Hence, LIFO stack not at all novel
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RCU Workaround (C11, 1/2)
struct node_t* _Atomic top;

void list_push(value_t v) 
{
  struct node_t *newnode = (struct node_t *) malloc(sizeof(*newnode));

  set_value(newnode, v);
  rcu_read_lock();
  newnode->next = atomic_load(&top);
  do {
    // newnode->next may have become invalid
  } while (!atomic_compare_exchange_weak(&top, &newnode->next, newnode));
  rcu_read_unlock();
}
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Problem Statement (C11, 2/2)

void list_pop_all()
{
  struct node_t *p = atomic_exchange(&top, NULL);

  while (p) {
    struct node_t *next = p->next;
        
    foo(p);
    kfree_rcu(p);
    p = next;
  }
}
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Current Rust Practice
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Current Rust Practice

● Rust LIFO Stack<T> uses SharedIncin
● A simple RCU-like mechanism

– Hat tip to livejournal commenter 94.134.180.48
– “Will Your Rust Code Survive the Attack of the 

Zombie Pointers?”
● https://paulmck.livejournal.com/64730.html 
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Rust Workaround (1/2)
pub fn push(&self, val: T) {
    let mut target =
        OwnedAlloc::new(Node::new(val, self.top.load(Acquire)));

    loop {
        let new_top = target.raw().as_ptr();
        match self.top.compare_exchange(
            target.next, new_top, Release, Relaxed,) {
            Ok(_) => {
                target.into_raw();
                break;
            },  
            Err(ptr) => target.next = ptr,
        }   
    }   
}

https://docs.rs/lockfree/latest/src/lockfree/stack.rs.html
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Rust Workaround (2/2)
pub fn pop(&self) -> Option<T> {
    let pause = self.incin.inner.pause();
    let mut top = self.top.load(Acquire);

    loop {
        let mut nnptr = NonNull::new(top)?;
        match self.top.compare_exchange(
            top, unsafe { nnptr.as_ref().next },
            AcqRel, Acquire,) {
            Ok(_) => {
                let val = unsafe { (&mut *nnptr.as_mut().val as *mut T).read() };
                pause.add_to_incin(unsafe { OwnedAlloc::from_raw(nnptr) });
                break Some(val);
            },
            Err(new_top) => top = new_top,
        }
    }
}

https://docs.rs/lockfree/latest/src/lockfree/stack.rs.html
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Rust Workaround (2/2)
pub fn pop(&self) -> Option<T> {
    let pause = self.incin.inner.pause();
    let mut top = self.top.load(Acquire);

    loop {
        let mut nnptr = NonNull::new(top)?;
        match self.top.compare_exchange(
            top, unsafe { nnptr.as_ref().next },
            AcqRel, Acquire,) {
            Ok(_) => {
                let val = unsafe { (&mut *nnptr.as_mut().val as *mut T).read() };
                pause.add_to_incin(unsafe { OwnedAlloc::from_raw(nnptr) });
                break Some(val);
            },
            Err(new_top) => top = new_top,
        }
    }
}

Deferred free, a form of RCU
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Non-Problem Push Illustration (Rust)
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Non-Problem Push Illustration (Rust)
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Incinerator
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Non-Problem Push Illustration (Rust)
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Incinerator
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Non-Problem Push Illustration (Rust)

top A @ 1Initial State B @ 2

top A @ 1Push C#1 C @ 3B @ 2

top A @ 1Pop B @ 2 C @ 3

Incinerator
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Non-Problem Push Illustration (Rust)

top A @ 1Initial State B @ 2

top A @ 1Push C#1 C @ 3B @ 2

top A @ 1Pop B @ 2 C @ 3

top D @ 4Push D C @ 3B @ 2 A @ 1

Incinerator
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Non-Problem Push Illustration (Rust)

top A @ 1Initial State B @ 2

top A @ 1Push C#1 C @ 3B @ 2

top A @ 1Pop B @ 2 C @ 3

top D @ 4Push D C @ 3B @ 2 A @ 1

top D @ 4Push C#2
fail, retry C @ 3 B @ 2 A @ 1

Incinerator
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Non-Problem Push Illustration (Rust)

top A @ 1Initial State B @ 2

top A @ 1Push C#1 C @ 3B @ 2

top A @ 1Pop B @ 2 C @ 3

top D @ 4Push D C @ 3B @ 2 A @ 1

top D @ 4Push C#2
fail, retry C @ 3 B @ 2 A @ 1

Incinerator

So why the incinerator???
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Problem Pop Illustration (Rust-ish)
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Problem Pop Illustration (Rust-ish)
top A @ 1Initial State B @ 2 Incinerator

Freelist
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Problem Pop Illustration (Rust-ish)
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Problem Pop Illustration (Rust-ish)
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Incinerator
Freelist
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Problem Pop Illustration (Rust-ish)
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Problem Pop Illustration (Rust-ish)
top A @ 1Initial State B @ 2

top A @ 1Pop A#1 B @ 2

top A @ 1Pop A B @ 2

top C @ 3Push C B @ 2 A @ 1

Incinerator
Freelist

top C @ 3Push D B @ 2D @ 1



35

Problem Pop Illustration (Rust-ish)
top A @ 1Initial State B @ 2

top A @ 1Pop A#1 B @ 2

top A @ 1Pop A B @ 2

top C @ 3Push C B @ 2 A @ 1

top D @ 4Pop AD#2
succeeds! B @ 2 D @ 1

Incinerator
Freelist

top C @ 3Push D B @ 2D @ 1

X
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Problem Pop Illustration (Rust-ish)
top A @ 1Initial State B @ 2

top A @ 1Pop A#1 B @ 2

top A @ 1Pop A B @ 2

top C @ 3Push C B @ 2 A @ 1

top D @ 4Pop AD#2
succeeds! B @ 2 D @ 1

Incinerator
Freelist

top C @ 3Push D B @ 2D @ 1

X

LIFO stack with single-element pop

Is absolutely not 
ABA tolerant!!!



37

Problem Pop Illustration (Rust-ish)
top A @ 1Initial State B @ 2

top A @ 1Pop A#1 B @ 2

top A @ 1Pop A B @ 2

top C @ 3Push C B @ 2 A @ 1

top D @ 4Pop AD#2
succeeds! B @ 2 D @ 1

Incinerator
Freelist

top C @ 3Push D B @ 2D @ 1

X

LIFO stack with single-element pop

Is absolutely not 
ABA tolerant!!!

Rust Stack<T> needs that incinerator!
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Future Directions?
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So What Is The Problem???

● Just defer free in both C, C++, and Rust!!!
● But this has costs if only pop-all is used:

– Otherwise pointless deferred-free mechanism
– Increased memory footprint
– Increased CPU overhead

● Plus there are other use cases...
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Why push() and pop_all()???

● “Server thread” use case
● Client threads push() requests
● Server thread does pop_all() and handles all 

requests up to that point
● This use case is often performance-critical and 

can appear in memory-constrained environments
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Other Uses of Invalid Pointers

● Optimized sharded locks
● Hazard-pointer try_protect()
● Checking realloc() return value (Rust?)
● Pointers as keys and identity-only pointers
● Weak pointers (Android)

P1726R5: Pointer lifetime-end zap (informational/historical) https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf
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Other Uses of Invalid Pointers

● Optimized sharded locks
● Hazard-pointer try_protect()
● Checking realloc() return value (Rust?)
● Pointers as keys and identity-only pointers
● Weak pointers (Android)

P1726R5: Pointer lifetime-end zap (informational/historical) https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf

Most need only stable comparisons
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How To Solve This Problem?

● Avoid using ABA-tolerant algorithms
– Or pretend that such algorithms are not ABA-tolerant
– Either way, Just Say No

● For example, defer freeing of memory (as Rust Stack<T> does)

● Hide the memory allocator from the compiler
– Attractive in standalone applications with special memory allocators

● Provide means to tell compiler to recompute provenance
– Atomics, volatiles, and marking pointers safe (recursively)
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Recompute Provenance!!!

● Recompute provenance on pointers:
– Affected by atomic operations, including old pointer in successful CAS
– Affected by volatile operation
– Passed through recompute_provenance()

● Including pointers reached via the returned pointer

● Non-comparison non-dereference computations involving 
invalid pointers must use representation bytes
– Including normal loads and stores



45

Recompute Provenance Key Points

● Volatile operations require this anyway
– Rust device driver interacting with Rust firmware!!!

● Nothing is lost in atomics, as they change behind the 
compiler’s back anyway, and by design

● Nothing is lost via recompute_provenance() 
because compiler cannot invent pointer comparisons
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More Exciting Proposed Solution

● Anthony Williams:
– P2188R1: Zap the Zap: Pointers are sometimes just 

bags of bits
– https://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2020/p2188r1.html 
● Quite popular, except with compiler writers



47

Summary
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Summary

● There are performance-critical ABA-tolerant 
algorithms

● Deferred free can handle them, but at a cost
● But why not enable no-extra-cost 

implementation of ABA-tolerant algorithms?
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For More Information
● C N2369: Pointer lifetime-end zap

– https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf 
● C++ P1726R5: Pointer lifetime-end zap (informational/historical)

– https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf 
● CPPCON: Will Your Rust Code Survive the Attack of the Zombie Pointers?

– https://paulmck.livejournal.com/64730.html 
● Blog: Will Your Rust Code Survive the Attack of the Zombie Pointers?

– https://paulmck.livejournal.com/64730.html 
● C++ P2414R1: Pointer lifetime-end zap proposed solutions

– https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2414r1.pdf 
● C++ P2188R1: Zap the Zap: Pointers are sometimes just bags of bits

– https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2188r1.html 
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Questions?
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