

Lifetime-End Pointer Zap in Rust

© 2023 Meta Platforms

Paul E. McKenney, Meta Platforms Kernel Team

Kangrejos 2023, September 17, 2023

2

Overview

● Problem statement
● Current Rust practice
● Future directions?

3

Problem Statement

4

Problem Statement (C11, 1/2)

struct node_t* _Atomic top;

void list_push(value_t v)
{
 struct node_t *newnode = (struct node_t *) malloc(sizeof(*newnode));

 set_value(newnode, v);
 newnode->next = atomic_load(&top);
 do {
 // newnode->next may have become invalid
 } while (!atomic_compare_exchange_weak(&top, &newnode->next, newnode));
}

5

Problem Statement (C11, 2/2)

void list_pop_all()
{
 struct node_t *p = atomic_exchange(&top, NULL);

 while (p) {
 struct node_t *next = p->next;

 foo(p);
 free(p);
 p = next;
 }
}

6

Problem Illustration (C11)

top A @ 1Initial State
Freelist

7

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

Freelist

8

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

Freelist

9

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

Freelist

10

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

11

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

“Zombie Pointer”

12

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

“Zombie Pointer”
OK in assembly language!!!

13

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

“Zombie Pointer”
OK in assembly language!!!

LIFO stack with pop-all is ABA tolerant

14

Why Worry About Novel Algorithms?

● LIFO stack described by Treiber in 1986
– Written in IBM BAL, avoiding issues with compilers

● LIFO stack alluded to in early 1970s
● LIFO stack implemented in Rust library

– Though with pop(), not pop_all().
● Hence, LIFO stack not at all novel

15

RCU Workaround (C11, 1/2)
struct node_t* _Atomic top;

void list_push(value_t v)
{
 struct node_t *newnode = (struct node_t *) malloc(sizeof(*newnode));

 set_value(newnode, v);
 rcu_read_lock();
 newnode->next = atomic_load(&top);
 do {
 // newnode->next may have become invalid
 } while (!atomic_compare_exchange_weak(&top, &newnode->next, newnode));
 rcu_read_unlock();
}

16

Problem Statement (C11, 2/2)

void list_pop_all()
{
 struct node_t *p = atomic_exchange(&top, NULL);

 while (p) {
 struct node_t *next = p->next;

 foo(p);
 kfree_rcu(p);
 p = next;
 }
}

17

Current Rust Practice

18

Current Rust Practice

● Rust LIFO Stack<T> uses SharedIncin
● A simple RCU-like mechanism

– Hat tip to livejournal commenter 94.134.180.48
– “Will Your Rust Code Survive the Attack of the

Zombie Pointers?”
● https://paulmck.livejournal.com/64730.html

19

Rust Workaround (1/2)
pub fn push(&self, val: T) {
 let mut target =
 OwnedAlloc::new(Node::new(val, self.top.load(Acquire)));

 loop {
 let new_top = target.raw().as_ptr();
 match self.top.compare_exchange(
 target.next, new_top, Release, Relaxed,) {
 Ok(_) => {
 target.into_raw();
 break;
 },
 Err(ptr) => target.next = ptr,
 }
 }
}

https://docs.rs/lockfree/latest/src/lockfree/stack.rs.html

20

Rust Workaround (2/2)
pub fn pop(&self) -> Option<T> {
 let pause = self.incin.inner.pause();
 let mut top = self.top.load(Acquire);

 loop {
 let mut nnptr = NonNull::new(top)?;
 match self.top.compare_exchange(
 top, unsafe { nnptr.as_ref().next },
 AcqRel, Acquire,) {
 Ok(_) => {
 let val = unsafe { (&mut *nnptr.as_mut().val as *mut T).read() };
 pause.add_to_incin(unsafe { OwnedAlloc::from_raw(nnptr) });
 break Some(val);
 },
 Err(new_top) => top = new_top,
 }
 }
}

https://docs.rs/lockfree/latest/src/lockfree/stack.rs.html

21

Rust Workaround (2/2)
pub fn pop(&self) -> Option<T> {
 let pause = self.incin.inner.pause();
 let mut top = self.top.load(Acquire);

 loop {
 let mut nnptr = NonNull::new(top)?;
 match self.top.compare_exchange(
 top, unsafe { nnptr.as_ref().next },
 AcqRel, Acquire,) {
 Ok(_) => {
 let val = unsafe { (&mut *nnptr.as_mut().val as *mut T).read() };
 pause.add_to_incin(unsafe { OwnedAlloc::from_raw(nnptr) });
 break Some(val);
 },
 Err(new_top) => top = new_top,
 }
 }
}

Deferred free, a form of RCU

22

Non-Problem Push Illustration (Rust)

23

Non-Problem Push Illustration (Rust)

top A @ 1Initial State B @ 2
Incinerator

24

Non-Problem Push Illustration (Rust)

top A @ 1Initial State B @ 2

top A @ 1Push C#1 C @ 3B @ 2

Incinerator

25

Non-Problem Push Illustration (Rust)

top A @ 1Initial State B @ 2

top A @ 1Push C#1 C @ 3B @ 2

top A @ 1Pop B @ 2 C @ 3

Incinerator

26

Non-Problem Push Illustration (Rust)

top A @ 1Initial State B @ 2

top A @ 1Push C#1 C @ 3B @ 2

top A @ 1Pop B @ 2 C @ 3

top D @ 4Push D C @ 3B @ 2 A @ 1

Incinerator

27

Non-Problem Push Illustration (Rust)

top A @ 1Initial State B @ 2

top A @ 1Push C#1 C @ 3B @ 2

top A @ 1Pop B @ 2 C @ 3

top D @ 4Push D C @ 3B @ 2 A @ 1

top D @ 4Push C#2
fail, retry C @ 3 B @ 2 A @ 1

Incinerator

28

Non-Problem Push Illustration (Rust)

top A @ 1Initial State B @ 2

top A @ 1Push C#1 C @ 3B @ 2

top A @ 1Pop B @ 2 C @ 3

top D @ 4Push D C @ 3B @ 2 A @ 1

top D @ 4Push C#2
fail, retry C @ 3 B @ 2 A @ 1

Incinerator

So why the incinerator???

29

Problem Pop Illustration (Rust-ish)

30

Problem Pop Illustration (Rust-ish)
top A @ 1Initial State B @ 2 Incinerator

Freelist

31

Problem Pop Illustration (Rust-ish)
top A @ 1Initial State B @ 2

top A @ 1Pop A#1 B @ 2

Incinerator
Freelist

32

Problem Pop Illustration (Rust-ish)
top A @ 1Initial State B @ 2

top A @ 1Pop A#1 B @ 2

top A @ 1Pop A B @ 2

Incinerator
Freelist

33

Problem Pop Illustration (Rust-ish)
top A @ 1Initial State B @ 2

top A @ 1Pop A#1 B @ 2

top A @ 1Pop A B @ 2

top C @ 3Push C B @ 2 A @ 1

Incinerator
Freelist

34

Problem Pop Illustration (Rust-ish)
top A @ 1Initial State B @ 2

top A @ 1Pop A#1 B @ 2

top A @ 1Pop A B @ 2

top C @ 3Push C B @ 2 A @ 1

Incinerator
Freelist

top C @ 3Push D B @ 2D @ 1

35

Problem Pop Illustration (Rust-ish)
top A @ 1Initial State B @ 2

top A @ 1Pop A#1 B @ 2

top A @ 1Pop A B @ 2

top C @ 3Push C B @ 2 A @ 1

top D @ 4Pop AD#2
succeeds! B @ 2 D @ 1

Incinerator
Freelist

top C @ 3Push D B @ 2D @ 1

X

36

Problem Pop Illustration (Rust-ish)
top A @ 1Initial State B @ 2

top A @ 1Pop A#1 B @ 2

top A @ 1Pop A B @ 2

top C @ 3Push C B @ 2 A @ 1

top D @ 4Pop AD#2
succeeds! B @ 2 D @ 1

Incinerator
Freelist

top C @ 3Push D B @ 2D @ 1

X

LIFO stack with single-element pop

Is absolutely not
ABA tolerant!!!

37

Problem Pop Illustration (Rust-ish)
top A @ 1Initial State B @ 2

top A @ 1Pop A#1 B @ 2

top A @ 1Pop A B @ 2

top C @ 3Push C B @ 2 A @ 1

top D @ 4Pop AD#2
succeeds! B @ 2 D @ 1

Incinerator
Freelist

top C @ 3Push D B @ 2D @ 1

X

LIFO stack with single-element pop

Is absolutely not
ABA tolerant!!!

Rust Stack<T> needs that incinerator!

38

Future Directions?

39

So What Is The Problem???

● Just defer free in both C, C++, and Rust!!!
● But this has costs if only pop-all is used:

– Otherwise pointless deferred-free mechanism
– Increased memory footprint
– Increased CPU overhead

● Plus there are other use cases...

40

Why push() and pop_all()???

● “Server thread” use case
● Client threads push() requests
● Server thread does pop_all() and handles all

requests up to that point
● This use case is often performance-critical and

can appear in memory-constrained environments

41

Other Uses of Invalid Pointers

● Optimized sharded locks
● Hazard-pointer try_protect()
● Checking realloc() return value (Rust?)
● Pointers as keys and identity-only pointers
● Weak pointers (Android)

P1726R5: Pointer lifetime-end zap (informational/historical) https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf

42

Other Uses of Invalid Pointers

● Optimized sharded locks
● Hazard-pointer try_protect()
● Checking realloc() return value (Rust?)
● Pointers as keys and identity-only pointers
● Weak pointers (Android)

P1726R5: Pointer lifetime-end zap (informational/historical) https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf

Most need only stable comparisons

43

How To Solve This Problem?

● Avoid using ABA-tolerant algorithms
– Or pretend that such algorithms are not ABA-tolerant
– Either way, Just Say No

● For example, defer freeing of memory (as Rust Stack<T> does)

● Hide the memory allocator from the compiler
– Attractive in standalone applications with special memory allocators

● Provide means to tell compiler to recompute provenance
– Atomics, volatiles, and marking pointers safe (recursively)

44

Recompute Provenance!!!

● Recompute provenance on pointers:
– Affected by atomic operations, including old pointer in successful CAS
– Affected by volatile operation
– Passed through recompute_provenance()

● Including pointers reached via the returned pointer

● Non-comparison non-dereference computations involving
invalid pointers must use representation bytes
– Including normal loads and stores

45

Recompute Provenance Key Points

● Volatile operations require this anyway
– Rust device driver interacting with Rust firmware!!!

● Nothing is lost in atomics, as they change behind the
compiler’s back anyway, and by design

● Nothing is lost via recompute_provenance()
because compiler cannot invent pointer comparisons

46

More Exciting Proposed Solution

● Anthony Williams:
– P2188R1: Zap the Zap: Pointers are sometimes just

bags of bits
– https://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2020/p2188r1.html
● Quite popular, except with compiler writers

47

Summary

48

Summary

● There are performance-critical ABA-tolerant
algorithms

● Deferred free can handle them, but at a cost
● But why not enable no-extra-cost

implementation of ABA-tolerant algorithms?

49

For More Information
● C N2369: Pointer lifetime-end zap

– https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf
● C++ P1726R5: Pointer lifetime-end zap (informational/historical)

– https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf
● CPPCON: Will Your Rust Code Survive the Attack of the Zombie Pointers?

– https://paulmck.livejournal.com/64730.html
● Blog: Will Your Rust Code Survive the Attack of the Zombie Pointers?

– https://paulmck.livejournal.com/64730.html
● C++ P2414R1: Pointer lifetime-end zap proposed solutions

– https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2414r1.pdf
● C++ P2188R1: Zap the Zap: Pointers are sometimes just bags of bits

– https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2188r1.html

50

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

